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Convective, absolute, and global instabilities of thermocapillary-buoyancy convection
in extended layers

Jānis Priede and Gunter Gerbeth
Forschungszentrum Rossendorf, P.O. Box 510119, D-01314 Dresden, Germany

~Received 24 March 1997!

We study the linear stability of thermocapillary-buoyancy convection in an extended liquid layer subject to
a longitudinal temperature gradient. It is found that by applying the concepts of convective, absolute, and
global instabilities, theory agrees well with experiment. Two different effects due to the lateral walls are
considered. First, the stationary disturbance due to the end walls induces a steady wave pattern spreading over
the whole layer as the zero-frequency mode becomes convectively unstable. Second, virtual reflections of
traveling disturbances by the lateral walls provide the feedback necessary for the onset of a global instability.
In the simplest case, a global neutrally stable state is formed by a couple of transverse waves propagating at the
same frequency in opposite directions, so that spatial amplification of one wave compensates for the attenua-
tion of the other. However, the most dangerous self-sustained disturbance is set up by a couple of mirror
symmetric oblique waves propagating purely spanwise. For purely thermocapillary-driven flow the threshold
of self-sustained instability is just slightly higher than that of the convective instability. However, for liquids of
large Prandtl number a moderate buoyancy effect may cause a significant stabilization of self-sustained oscil-
latory instability.@S1063-651X~97!02610-X#

PACS number~s!: 47.20.Dr, 47.20.Bp
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I. INTRODUCTION

Because surface tension of common liquids decrea
with temperature, any nonuniformity of surface temperat
drives the liquid at the surface from hot to cold region
Viscosity and incompressibility of the liquid causes this m
tion to spread to the underlying bulk liquid. Smith and Dav
@1# found that the thermocapillary effect driving such flow
can additionally be the cause of a new type of instabi
called hydrothermal waves, which are predicted to occu
the longitudinal temperature gradient exceeds a cer
threshold that depends on the liquid properties and its ge
etry. The hydrothermal waves are coupled flow and temp
ture disturbances sustained by both velocity and tempera
gradients of the basic flow. Up to now several experime
have been done to verify this prediction@2–5#. However,
there are two significant assumptions in the original the
which complicate its straightforward verification. First,
horizontally homogeneous basic flow is assumed. Sec
the effect of buoyancy, which is always present in earth
periments, was not taken into account by Smith and Da
@1#. The first assumption is not a crucial problem for t
experiment, because an almost homogeneous basic flow
be obtained in a midpart of a sufficiently extended liqu
layer @2#. On the other hand, the buoyancy effect can ea
be incorporated into the theory@6#.

Comparison of predictions of such an advanced the
with results of an adequate experiment@2# reveals a substan
tial disagreement between both. Although both theory a
experiment show that for high-Prandtl-number liquids li
silicon oil an oscillatory instability is stabilized with increas
of the depth of the layer, the experimentally found thresh
of this instability is significantly higher than the predicte
one. This disagreement sharply increases with the dept
the layer. Moreover, the experiment shows that for su
561063-651X/97/56~4!/4187~13!/$10.00
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ciently deep liquid layers a stationary instability sets in b
fore an oscillatory one, whereas the latter is predicted to
always the most unstable one. So the disagreement betw
experiment and existing theory is not only quantitative, b
also qualitative. Since a properly designed experiment m
the principal assumptions of the theory, the disagreem
between both must be due to the latter, which is based
conventional linear stability analysis.

In this paper, we show that linear stability analysis of
homogeneous basic state is able to bring predictions
agreement with experiment when the distinction between
concepts of convective, absolute and global instabilities@7,8#
is taken into account. Because up to now this distinction
been ignored for the stability of convective flows in extend
liquid layers, we begin by presenting the basic ideas
physically obvious terms. The concepts of absolute and g
bal instability rely essentially on the criterion defining th
direction of wave propagation. Our approach in this po
differs from the conventional one. We prove that the sign
the real part of group velocity is a correct criterion for
nonconservative medium to determine the direction of pro
gation of a certain class of most unstable modes. The c
ventional approach ignores two important effects due to
confining lateral walls always present in real experimen
First, these walls disturb the assumed uniformity of the ba
flow. The problem is to evaluate how far this perturbati
can spread from the wall. We show that the effect due to
lateral walls can cause a stationary wave pattern sprea
through the whole layer when the zero-frequency mode
comes convectively unstable. Second, the lateral walls
reflect convectively unstable disturbances, giving rise to
global instability.

The paper is organized as follows. The theoretical ba
ground is discussed in Sec. II. Section III gives the formu
tion of the problem. Stationary waves induced by end wa
are analyzed in Sec. IV. Both self-sustained transverse wa
4187 © 1997 The American Physical Society
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4188 56JĀNIS PRIEDE AND GUNTER GERBETH
due to global and absolute instabilities and mixed absol
global oblique wave instabilities are considered in Sec. V
comparison with experimental results is done in Sec. VI
summary and concluding remarks are given in Sec. VII.

II. THEORETICAL BACKGROUND

A. On the conventional theory

The approach of Smith and Davis@1# is based on conven
tional linear stability theory. Unfortunately, predictions
this theory about the stability of spatially extended syste
are often interpreted incorrectly by ignoring the distincti
between the concepts of convective and absolute instabil
@9#. Therefore, it might be useful to recall some princip
ideas underlying the linear stability analysis of spatially e
tended homogeneous systems. Our aim here is to presen
necessary background in a physically obvious way, avoid
the mathematical complexities as much as possible. Our
proach differs in some points from the commonly adop
one.

The basic state, whose stability is to be investigated
assumed to be both stationary and uniform in one or m
spatial directions. The equations governing the spatiotem
ral evolution of infinitesimal perturbations of such a ba
state are linear and independent of both time and the coo
nates of which the basic state is independent. A partic
solution of such equations is an exponential function of b
time and the corresponding coordinates.

If the system is regarded as unbounded along the
tended directions, there are no boundary conditions to
satisfied along those coordinates. Then an exponential v
tion of the perturbation along these coordinates may be a
trary. This ambiguity may be eliminated by requiring th
perturbation to be bounded at both infinities of the cor
sponding coordinates. This restricts the perturbation to a c
stant amplitude harmonic wave, called the Fourier mo
c;ei (k•r2vt), wherek is a real wave vector having compo
nents only along those directions in which the basic stat
uniform; r is the radius vector; andv is a complex fre-
quency, wherev r5R@v# is the oscillation frequency, bu
v i5I@v# is the temporal growth rate of the correspondi
perturbation. The frequencyv and wave vectork are con-
strained to satisfy the dispersion relationD(v,k;R)50,
where R stands for one or more parameters defining
problem. The dispersion relation may be regarded as imp
itly defining v as a function of argumentk and parameterR:
v5v(k;R). Note thatv may in general be a multivalue
function ofk. Further,v will be used to denote the comple
frequency branch having the largest imaginary part.

To determine whether the given basic state is stable
not, formally one has to investigate the evolution of all v
tual perturbations. But as long as the problem is linear,
arbitrary disturbance may be considered as a superpositio
independently evolving Fourier modes. According to th
idea, after a sufficiently long time the perturbation will b
dominated by the Fourier mode having the highest temp
growth ratev i ,c5v i(kc), wherekc is the critical wave vec-
tor at which this maximum is attained. It is said that t
system is stable ifv i ,c,0, but unstable ifv i ,c.0.

However, it must be realized that this criterion may
ambiguous with respect to extended systems. The ambig
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stems from the double infinite limit used in deducing th
criterion. Considering a single Fourier mode which exten
over the whole space, one actually proceeds first to the l
of infinite space, and subsequently to the limit of infini
time t→`. The problem one should be aware of is that t
obtained result can depend on the order in which these lim
are proceeded.

To illustrate this, consider a one-dimensional example
a spatially localized initial perturbation given by the wa
packet

c0~x!;e2~«x/2!2
eikcx,

where wave numberkc is that of the Fourier mode havin
maximum temporal growth rate, and« defines the width of
the wave packet. The limit«→0 recovers the pure Fourie
mode. In the wave-number space, this perturbation is gi
by the Gaussian distribution centered aboutkc ,

c̃0~k!;
1

«Ap
e2@~k2kc!/«#2

.

The evolution of this perturbation is given by the Fouri
integral

c~x,t !;E
2`

`

c̃0~k!ei ~kx2vt !dk. ~1!

If the width of the wave packet exceeds the wavelen
(«!kc) considerably, the perturbation is significantly diffe
ent from zero only for wave numbers sufficiently close tokc .
Thenv may be approximated by a power-series expansi

v~k!'vc1vk~k2kc!1
vkk

2
~k2kc!

2, ~2!

where vc5v(kc), vk5]v/]kuk5kc
5]v r /]kuk5kc

, and

vkk5 ]2v/]k2uk5kc
. Note that the maximum of tempora

growth rate at k5kc implies ]v i /]kuk5kc
50 and

gkk5I@vkk#,0. Substituting Eq.~2! into Eq.~1!, and taking
the integral, we obtain

c~x,t !;expF2
~x2vkt !

2

4«2212ivkkt
Gei ~kcx2vct !.

Note that this result is exact only when the dispersion re
tion coincides with the given power-series expansion. For
purpose of illustration, this is assumed to be the case he

There are two distinct possibilities of how to evaluate t
long-time asymptotics of the above solution. Proceeding fi
to the limit of infinite length of wave packet («→0), we
recover the result of the conventional theory which yie
v i ,c for the temporal growth rate. The other possibility is
keep « fixed and to proceed first to the limitt→`. This
results in the following asymptotic growth rate:

v i~U !5v i ,c1
gkk

2uvkku2 ~vk2U !2,

whereU is the translation velocity of the frame of referen
where the wave packet is observed. Becausegkk,0, this
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56 4189CONVECTIVE, ABSOLUTE, AND GLOBAL . . .
temporal growth rate is in general lower than the conv
tional one, except for the frame of reference moving with
group velocity of the wave packetU5vk , where both quan-
tities coincide. Since the length of any real disturbance
always limited by that of the system, the last result gives
actual asymptotic growth rate for real systems.

Thus, just beyond the threshold predicted by the conv
tional theory, the most dangerous perturbation grows onl
the frame of reference traveling with the group velocity
this perturbation, while it decays in any other frame of r
erence. This means that beyond this threshold the syste
just able to amplify the disturbances excited externally. S
a behavior, actually predicted by the conventional analy
is referred to as the convective instability. Since the m
unstable perturbation grows only while it travels with resp
to the laboratory frame of reference, the disturbances ha
a sufficiently small initial amplitude may leave the system
finite length before attaining an experimentally observa
magnitude.

B. Global instability

An unstable small initial perturbation can attain an o
servable magnitude if it does not move away from the po
of its excitation. This corresponds to the absolute instabi
which, however, is not the only possibility for the develo
ment of a self-sustained instability. Such an instability co
develop directly beyond the threshold of convective insta
ity if there were some feedback in the system redirectin
part of a growing perturbation back to the point of its orig
In principle, the needed feedback could be provided by c
pling between different Fourier modes, but from the point
view of the conventional linear theory there is none. Ho
ever, this is not always so. The principal point to realize
that the mutual independence of different traveling wave
not only due to the linearity of the problem, but also ste
from the assumed absence of lateral boundaries. For a
bounded system there are certain conditions which mus
satisfied at the lateral walls. The time-independent bound
conditions cannot be satisfied by a single traveling wa
Rather, a superposition of several traveling waves is
quired. Therefore, different traveling waves, which would
mutually independent in an unbounded system, beco
coupled in the presence of confining walls.

Since the boundary corrupts the uniformity of the ba
state necessary for propagation of a single Fourier mo
while preserving its time invariance, reflection of a sing
wave may result in all modes permitted by the dispers
relation at the frequency of the incident wave. To find
flected waves, we have to solve the dispersion relation
complex wave numbers at real frequencies. This problem
equivalent to that of finding the spatial evolution of a fr
wave apart from the source forcing it with the given fr
quency. Complex wave numbers mean that a perturba
may be either attenuated or amplified by the medium. T
problem of distinguishing between these two opposite ca
will be addressed in Sec. II C.

As argued above, a single incident wave may be coup
to multiple reflected waves. If the system is extend
enough, the reflected waves sufficiently far away from
boundary will be dominated by the mode having either
highest amplification or minimal attenuation rate. Sub
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quently this will be referred to as the highest spatial grow
rate. To derive the dispersion relation for an extended
bounded system, consider a wave sufficiently far away fr
the confining boundaries and propagating in the positive
rection of thex axis,

c0~x,t !5Aei ~k1x2vt !, ~3!

whereA is the amplitude of the wave, andk15k1(v;R) is
the complex wave number having the largest spatial gro
rate for the given frequencyv and control parameterR. Sup-
pose that the wave with the highest spatial growth r
propagating in the opposite direction at the same freque
and control parameter has the complex wave num
k25k2(v;R). Because within the framework of linea
theory the amplitude of the reflected wave must be prop
tional to that of the incident wave, the dominating mo
excited by reflection of the incident wavec0 from the
boundary atx5L is given by

c1~x,t !5R1Aeik1Lei ~k2~x2L !2vt !,

whereR1 is a complex, generally unknown reflection coe
ficient. The wave reflected once more from the oppos
boundary atx50 may be written as

c2~x,t !5R1R2Aei ~k12k2!Lei ~k1x2vt !, ~4!

whereR2 stands for the corresponding reflection coefficie
For a superposition of two waves to evolve exponentially
time with the given complex frequencyv ~to be a normal
mode!, it is necessary that the twice reflected wave~4! coin-
cides with the incident one~3!. This yields the dispersion
relation for the system of large but finite lengthL @10#,

R1R2ei ~k12k2!L51. ~5!

The imaginary part of Eq.~5!, implying

R@k1~v;R!2k2~v;R!#L52arg~R1R2!6mp,

m50,2,4, . . . , ~6!

defines a discrete spectrum of wave numbers which tend
be continuous asL→`. Thus, in the limit of an infinitely
extended system, the above relation is satisfied by any w
numbersk6 , and the dispersion relation actually reduces
the real part of Eq.~5! alone which in addition significantly
simplifies by getting independent of both the unknown
flection coefficientsR1 , R2 and the lengthL,

I@k1~v;R!2k2~v;R!#50. ~7!

Thus the dispersion relation for an extended, bounded
tem, which is originally due to Kulikovskii@11#, is defined in
terms of the dispersion relation of the corresponding
bounded one. Note that by increasing the length of the s
tem this dispersion relation does not in general proceed
that of the equivalent unbounded system. An exception is
mirror-symmetric systems satisfyingk656k(v;R), for
which the convective instability also automatically ensu
the global one@11#. In general, the threshold of the glob
instability is higher than that of the convective instabili
beyond which a spatially amplified wave necessary for g
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4190 56JĀNIS PRIEDE AND GUNTER GERBETH
bal instability can arise@12#. It is interesting to note that
although the absolute instability does not require reflecti
from the lateral walls, it appears just as a special case of
global one when both waves constituting the global mo
merge together at some wave numberk05k15k2 .

C. Propagation direction in an active medium

The concept of global instability essentially relies on t
criterion defining the direction of wave propagation. It
well known that for an active~nonconservative! medium
contrary to a conservative one the group velocity does no
general present such a criterion@13#. The problem of identi-
fying the direction of propagation is equivalent to that
distinguishing between spatially amplified and attenua
waves. Since the space contrary to the time permits evolu
of waves in either direction, the sign of the imaginary part
the wave number, unlike that of the temporal growth ra
cannot be used to discriminate those two opposite cases

A general criterion for distinguishing spatially amplifie
and attenuated waves has been proposed by Twiss@14# ~see
also Ref.@10#!. This criterion can be interpreted as follow
Consider a free wave having a temporally constant, bu
general spatially varying, amplitude. If there is no absol
instability, such a wave must be due to some remote forc
rather than being self-sustained. According to the causa
principle, it must take a finite time for the perturbation
propagate from the source of its excitation to the point wh
it is observed. Forcing can be increased so quickly that
amplitude of the waves close to the source becomes la
than the amplitudes of those sufficiently far away which ha
been emitted earlier, when the forcing was lower. An ar
trary fast increase of forcing may be accomplished expon
tially with sufficiently high temporal growth ratev i . Conse-
quently, for v i→` all waves must be evanescent wi
distance away from the source. To determine whether
given wave is spatially amplified or attenuated one need
increasev i while following the change ofki . Change of sign
of ki as v i→` indicates that the wave has originally be
spatially amplified. Otherwise, it has been an attenuated
The direction of propagation can straightforwardly be d
duced from the sign ofki . Although such a procedure i
sufficient for determining the direction of propagation,
may not always be necessary. In a number of cases of p
tical significance a simpler criterion may be used, which
contrast to the previous one is local in the complex f
quency plane and, therefore more convenient for pract
application@15#. Such a criterion is suggested by the follow
ing causality arguments.

Because the problem for small-amplitude perturbatio
which are assumed to be the case here, is linear, the am
tude of such waves must be proportional to that of the fo
ing. When the latter is changed, the same must happen
the former. According to the causality, variation of the p
turbation must propagate from the source of its excitat
rather than take place immediately in the whole space.
determine the direction of propagation, suppose that fo
constant amplitude forcing there is a wave generated with
spatially varying amplitude at rateki5I@k#. If the forcing is
changed exponentially with a small temporal growth r
dv i , the spatial growth rate changes bydki . This corre-
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sponds to the change of the amplitude of the original wa
by factor C(x,t)5e2(dkix2dv i t). From here it follows that
the point of constant amplitudeC5const moves with veloc-
ity

U5
dv i

dki
5S ]v i

]ki
D

vr5const

.

Sincek is a complex function of complex argumentv, we
obtain

U5RS dk

dv D 21

5RS dv

dk D 21Udv

dkU
2

. ~8!

ThusU coincides with the group velocity when the latter
real. But, in general,U has the same sign as that of the re
part of the group velocity. Since the suggested criterion
contrast to the conventional one is defined by a local rela
between complex frequency and wave number, both crit
are not necessarily equivalent. This raises the question a
the correspondence between both criteria which is addre
below.

Consider a solution of the dispersion relation mapp
contourF, which passes in the complex wave number pla
at fixed ki parallel to the real axis, onto the complex fr
quency plane~see Fig. 1!. Assume that for every bounde

FIG. 1. Mappings between complex wave number~a! and fre-
quency planes~b!.
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56 4191CONVECTIVE, ABSOLUTE, AND GLOBAL . . .
spatial growth rateuki u,K the temporal growth rates ar
bounded from abovev i,V, whereK andV are some finite
constants. Note that this constraint is implied by the causa
principle which must be obeyed by any reasonably po
problem. The statement we want to prove is

sgnRS dv

dk D5sgn~ki !v i→` . ~9!

for the branch of complex frequency having largest tempo
growth ratev i at the given frequencyv r and spatial growth
rate ki . First, by the same arguments which led to relat
~8!, we obtain

sgnRS dv

dk D5sgnS ]ki

]v i
D .

Let us focus here on the complex frequency branch which
the waves with spatial growth rateki ,0 has at frequencyv r ,0
the highest temporal growth ratev i ,0 . Now, increasev i
abovev i ,0 , upon keepingv r5v r ,0 fixed, and follow varia-
tion of the corresponding solution of the dispersion relat
in the complex wave number plane. The assumed const
v i,V for all uki u,K implies thatki→` asv i→1`. Sup-
pose that the statement to be proved is false,

sgnS ]ki

]v i
D

v i5v0

Þsgn~ki !v i→` . ~10!

This implies that with increasingv i slightly abovev i ,0 , the
correspondingki proceeds away from its asymptotic valu
ki ,`5ki uv i→` . Thus at somev i ,1.v i ,0 there must be such

ki ,1 lying on the opposite side fromki ,0 than ki ,` , i.e.,
uki ,1u,uki ,0u,uki ,`u. For ki ,1 to proceed toki ,` , asv i is in-
creased further fromv1 to 1`, there must be such
v i ,2.v i ,1.v i ,0 at whichki ,25ki ,0 . This means that for the
given ki ,0 there is another branch in the complex frequen
plane having a temporal growth ratev i ,2.v i ,0 at the fre-
quencyv r ,0 . However, this contradicts our basic premi
that v i ,0 is the highest temporal growth rate for the giv
frequencyv r ,0 and spatial growth rateki ,0 . Consequently,
assumption~10! is false, which proves relation~9!. Note that
this proof concerns only the wave branch having the high
growth rate at the given frequency and spatial growth ra

III. PROBLEM DEFINITION

Consider a horizontal layer of liquid of kinematic visco
ity n, densityr, thermal expansion coefficienta, and thermal
conductivityk. The layer, having at rest depthd, is bounded
from below by a plane perfectly thermally insulating or co
ducting plate, and above by a free surface characterize
thermal conductance per unit areah. A constant temperature
gradientb is imposed along the layer, and a steady sh
flow is set up by a combined effect of buoyancy and visco
surface stress due to the temperature dependence of su
tension assumed to vary according to the linear law

t5t02g~T2T0!. ~11!
ty
d

l

r

n
int

y

st
.

by

r
s
ace

Hereg52dt/dT.0 denotes the negative rate of change
surface tension with temperature, whilet0 andT0 are refer-
ence values for surface tension and temperature, res
tively. The layer is assumed to be extended enough so th
homogeneous basic flow could develop sufficiently far aw
from the lateral walls. A sketch of the problem is shown
Fig. 2. The origin of the Cartesian coordinate system use
set at the midheight of the layer. Thex axis is directed
against to the imposed temperature gradientb, and thez axis
is normal to the plane of the layer. The surface tension
assumed to be high enough so that the free surface ma
considered as a planar and nondeformable boundary.

Transforming both the governing equations and bound
conditions to a dimensionless form, the depthd is chosen as
a length scale, and the timet, velocity fieldv, pressure field
p, and temperature differenceT2T0 are referred to scale
d2/n, n/d, rn2/d2, andbd, respectively. The fluid flow is
governed by the Navier-Stokes equation, the incompress
ity constraint, and the energy equation:

] tv1~v•“ !v52“p1¹2v1GrTez , ~12!

“•v50, ~13!

] tT1v•“T5Pr21¹2T, ~14!

where Pr5n/k is the Prandtl number and Gr5abgd4/n2 is
the Grashof number characterizing the effect of buoyanc

At the free surfacez5 1
2 there is balance of thermocapi

lary and shear stresses,

ez3~]zv1Re “T!50, ~15!

and a kinematic constraint resulting from the nondeforma
ity assumptionez•v50, where Re5gbd2/rn2 is the Reynolds
number which defines the strength of the thermocapill
effect. In order to keep consistency with previous papers
the given subject we introduce additionally the Marango
number Ma5Re Pr which is not an independent parame
here. Besides, it is more convenient to use the dynamic B
number Bo5Gr/Re5gard2/g instead of Gr to define the
relative effect of buoyancy.

Between the free surface and the surrounding med
there is a heat transfer which, as usually, is assumed to o
Newton’s law

FIG. 2. Sketch of the formulation of the problem.
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4192 56JĀNIS PRIEDE AND GUNTER GERBETH
]zT52Bi„T2T`~x!… on z5 1
2 , ~16!

where Bi5hd/k is the Biot number andT`(x)52x is the
temperature of the surrounding medium, having the sa
imposed temperature gradient as the liquid layer. On
rigid bottom there are no slip, impermeability, and zero h
flux ~insulating bottom!

v50, ]zT50 on z521/2,

or a fixed temperature~perfectly conducting bottom!

T~21/2!5T`~x!52x.

The problem under consideration has a steady parallel
solutionv̄5(ū,0,0), maintaining zero mass flux through a
vertical cross section

ū~z!5ReF3z2

4
1

z

4
2

1

16
2BoS z3

6
2

z2

16
2

z

16
1

1

192D G ,
~17!

T̄~x,z!52x2Pr ReH z4

16
1

z3

24
2

z2

32
2S 12

2S

3 D z11/2

32

1
P

3
2BoF z5

120
2

z4

192
2

z3

96
1

z2

384

1S 11
3S

5 D z11/2

192
1

P

20G J , ~18!

p̄~x,z!5ReFxS 3

2
1

Bo

8 D1BoE T̄~x,z!dzG , ~19!

whereS50 andP5 23/162 for the thermally insulating bot-
tom, andS5Bi/~11Bi! and P5 7/162 for the conducting
bottom.

We analyze the linear stability of the basic states~17!–
~19! with respect to the infinitesimal disturbances in the fo

~v,p,T!5~ v̄,p̄,T̄!1$v̂~z!,p̂~z!,T̂~z!%exp@ i ~k•r2vt !#,
~20!

wherek5(kx ,ky) is the wave vector coplanar to the layer,r
is the radius vector, butl is a complex temporal growth rate
Upon elimination of the pressure, the disturbance equat
may be written as

D2@D21 iv#ŵ2 ikx@ ūD22ū9#ŵ1Bo Re T̂50, ~21!

@D21 iv#û2 ikxūû2kyū8ŵ50, ~22!

@Pr21D21 iv2 ikxū#T̂2T̄8ŵ1k22~ ikxŵ81kyû!50,
~23!

where D2[@(d2/dz2)2k2# and the prime denotes the d
rivative with respect toz, ŵ5ez• v̂ is the vertical velocity,
and û5(k3ez)• v̂ is further referred to as the longitudina
velocity. It means that we consider the velocity disturban
in the coordinate system linked with the direction of t
wave vector.

The boundary conditions for the vertical velocityŵ are
e
e
t

w

ns

s

ŵ91k2 Re T̂50 on z5 1
2 , ~24!

ŵ8~2 1
2 !5ŵ~6 1

2 !50. ~25!

For the longitudinal velocity component, we have

û8~ 1
2 !5û~2 1

2 !50. ~26!

The boundary conditions for the temperature perturbation

T̂81BiT̂50 on z5 1
2 ~27!

at the free surface, and

T̂8~2 1
2 !50 or T̂~2 1

2 !50 ~28!

at insulating or conducting bottoms, respectively. Since th
mal boundary conditions have mostly a quantitative effe
which may be very significant for small Pr@16#, the follow-
ing results will be presented only for both free surface a
bottom being adiabatically insulated boundaries, i.e., Bi50

and T̂8(2 1
2 )50.

The dispersion relation is approximated by making use
a modified Chebyshev tau spectral method@17#, leading to a
matrix eigenvalue problem@18#. Spatial branchesk(v0) are
formally defined by a polynomial matrix eigenvalue proble
with respect tok. It is more advantageous to seek spat
branches as solutions of the complex equationv(k)2v050,
wherev(k) are complex frequencies defined by the ordina
matrix eigenvalue problem.

IV. STATIONARY CELLS DUE TO THE END WALLS

The uniformity of the basic state may be disturbed by
lateral walls. In this section we consider how far the infl
ence of these walls can extend into the homogeneous b
state. The disturbance caused by lateral walls has two
cific features. The first is a relatively large amplitude. If th
perturbation is evanescent with the distance, which is
sumed to be the case here in order to allow for the deve
ment of the spatially uniform basic state, then sufficiently
away from the boundary the amplitude becomes sm
enough for the linear theory to be applicable. The seco
specific feature is the stationarity of this perturbation. Th
the sought penetration distance is given by the inverse of
spatial attenuation rate of the zero-frequency mode.

Such an approach was used originally by Bye@19#, who
considered the problem of a steady flow in a rectangu
basin driven by a horizontal wind causing a constant sh
stress at the free surface of the liquid. The same problem
reconsidered also in Ref.@20# in the context of thermocapil-
lary convection of a zero Prandtl number liquid. In this a
proximation, perturbations of temperature and flow fields
decoupled. As a result, the problem considerably simpli
by reducing to a single equation~21!. The boundary condi-
tion ~24! is replaced by the fixed-stress condition

ŵ950 on z5 1
2 . ~29!

Complex wave numbers for a stationary perturbation
found from the equationv(k;Re)50, which has an infinite
number of discrete roots. We are interested only in the m
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with the largest spatial growth rate which dominates the p
turbation far away from the wall. There is one such mo
propagating downstream and one upstream. Further, le
examine how these perturbations vary with the Reyno
number. In the limit Re50, Eq. ~21! reduces to
D2@D21 iv#ŵ50 which for v50 has nontrivial solutions
satisfying the boundary conditions~25! and ~29! only when
k5kx satisfies the dispersion relation sinh(2k)22k50 @20#.
This equation has an infinite number of discrete roots wh
are not only complex conjugate, but also symmetric by pa
with respect to the imaginary axis. From the physical po
of view it is obvious that such viscosity-dominated wav
corresponding to the complex wave numbers must be e
nescent.

The advection of disturbances by the basic flow appea
at nonzero Reynolds numbers breaks the symmetry betw
the waves propagating in different directions. Since the
vection has no effect on the longitudinal disturbanc
(kx50) caused by the sidewalls, the following analysis w
be concerned with the transverse disturbances due to the
walls only. Let us consider first the basic flow driven sole
by the gradient of surface tension. It may be seen in Fig
that the spatial attenuation rates of the two dominating p
turbations induced by the hot and cold end walls, and pro
gating downstream and upstream relative to the surface
locity, respectively, decrease with increase of the Reyno

FIG. 3. Dimensionless spatial attenuation rates~a! and wave
numbers~b! of purely hydrodynamic (Pr50) upstream and down
stream dominating wave modes vs the Reynolds number for
surface-tension-driven basic flow (Bo50).
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number. However, it is important to notice that these pert
bations remain spatially attenuated regardless of how la
the Reynolds number is. This implies that the basic fl
under consideration is hydrodynamically stable with resp
to at least zero-frequency disturbances. A more detailed
amination shows that the basic flow driven solely by t
surface tension is linearly stable with respect to purely
drodynamic perturbations of any frequency@18#. It is impor-
tant to notice in Fig. 3 that for sufficiently large Re comple
wave numbers depend asymptotically on the Reynolds n
ber ask;Re21. This means that for Re@1 both wavelength
and attenuation distance increase proportionally with Re

Let us turn further to a more detailed examination of t
limit Re→`. In this case, it is advantageous to rescale
wave number as

k5 k̃ Re21. ~30!

Equation~21! then reduces to

d2

dz2 F d2

dz2 1 ivGŵ2 i k̃xF ũ
d2

dz2 2ũ9Gŵ50, ~31!

where ũ(z)5Re21 ū(z). The asymptotic growth rates foun
by making use of this reduced formulation are seen in Fig
to recover quite well the exact solution as Re→`.

The spatial evolution of perturbations can change prin
pally when nonzero Prandtl numbers are considered. In
case, the flow disturbances become coupled with those
temperature which are governed by Eq.~23!. For the trans-
verse disturbances under consideration the hydrodyna
part of the problem is still posed by Eq.~21!. The sole feed-
back of the temperature perturbation to that of the flow
provided by the boundary condition~24!.

Temperature perturbations are associated with additio
wave branches which, in the limit Re→0, are decoupled
from the hydrodynamic ones considered above. When b
the free surface and the bottom are adiabatic boundaries
fined by the boundary conditions~27! and ~28!, with Bi50,
it can readily be found from Eq.~23! that in the limit Re→0
the wave numbers of the dominating perturbations
k656 ip. For nonzero Re the hydrodynamic and therm
modes are no longer independent. As seen in Fig. 4, wh
dominating spatial attenuation rates versus Re are plotted
Pr50.01, an increase of Re can lead to the merging of
ferent modes. However, note that large-Re asymptotics
spatial branches for small but nonzero Pr and Pr50 are dif-
ferent. This difference is due to the effect of the basic flo
on the temperature disturbances, which is completely ab
for Pr50. Conversely, for small but nonzero Pr, a suf
ciently large Re can be attained at which the effect of adv
tion of temperature perturbations (;Pr Re) becomes signifi
cant. As seen in Fig. 4, for a finite Prandtl numb
(Pr50.01) and sufficiently large Re the downstream wa
branch becomes spatially oscillating like the upstream o
But a more important result evident in Fig. 4 is that t
asymptotics of wave numberk;Re21 also holds for nonzero
Pr. Therefore, similarly as for Pr50, let us make use of the
rescaled wave numberk̃, Eq. ~30!, and rescale additionally

e
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4194 56JĀNIS PRIEDE AND GUNTER GERBETH
the temperature perturbation asT̂5Re û. Substituting the
rescaled temperature into Eq.~23! and proceeding to the
limit Re→`, we obtain

FPr21
d2

dz2 1 iv2 i k̃xũG û5T̃8ŵ2 k̃22~ i k̃xŵ81 k̃yû!,

~32!

whereT̃8(z)5Re21 T̄8(z). In terms ofk̃ andû, the boundary
condition ~24! reads

ŵ91 k̃2û50 on z5 1
2 . ~33!

Equations~31! and ~32! together with boundary condition
~25!, ~27!, ~28!, and ~33! rewritten in terms ofû pose the
problem for asymptotic spatial branches at finite Pr
Re→`.

As seen in Fig. 5, where the asymptotic downstream
tenuation rate is plotted versus Pr, the coupling of the fl
and the temperature perturbations can have a principally
effect. That is, the downstream attenuation rate decrea
with growth of Pr becomes negative for Pr.0.67, where the
wave turns from a spatially attenuated to an amplified o
This means that the stationary perturbation induced by
hot end wall can spread downstream throughout the wh
layer, experiencing no attenuation. This results in a stat
ary in time, but spatially oscillating, wave extending fro
the hot end wall over the whole layer.

At the point of zero spatial attenuation rate, where
wave turns from a spatially attenuated to an amplified o
the wave number becomes purely real. Additionally,
steady amplitude of the wave implies that the tempo
growth rate is zero as well. Thus the given point lies on
conventional neutral stability curve defining the threshold
the convective instability which for the zero-frequency p
turbation is given by the two conditionsv i(ks ;Res)50 and
v r(ks ;Res)50, whereks is real. This pair of equations de
fines the critical Res beyond which a spatially amplified sta
tionary wave pattern emerges, whileks gives the correspond
ing wave number. The threshold of this instability depend
on the Prandtl number is presented in terms of the crit

FIG. 4. Dimensionless spatial attenuation rates and wave n
bers of the downstream dominating wave modes vs the Reyn
number for the surface-tension-driven basic flow (Bo50) at
Pr50.01.
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Marangoni number in Fig. 6. Note first that the stationa
instability, like the oscillatory transverse wave, occurs on
for sufficiently large Pr. Second, it is evident that the statio
ary perturbation is not convectively the most unstable o
There is a certain range of nonzero frequency modes wh

-
ds

FIG. 5. Dimensionless downstream asymptotic attenuation
~a! and the corresponding wave number~b! vs the Prandtl number
for Re→` and Bo50.

FIG. 6. Critical Marangoni numbers vs Prandtl number for va
ous transverse wave instabilities of the thermocapillary-driven b
flow (Bo50). CST, AOT, and COT stand for convective statio
ary, absolute oscillating, and convective oscillating transve
waves, respectively. The last~COT! is the threshold of the oscilla
tory convection predicted by the conventional theory.
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56 4195CONVECTIVE, ABSOLUTE, AND GLOBAL . . .
become convectively unstable before the stationary o
However, these convectively unstable oscillating mod
contrary to the stationary one, may be experimentally un
servable. The principal difference between the stationary
oscillating modes is that the first is generated by a per
nent, large-amplitude disturbance due to confining bou
aries, whereas the latter are caused by random sm
amplitude disturbances like noise. For such perturbation
be amplified by a convectively unstable medium up to
experimentally observable amplitude either the amplificat
rate or the length of system must be large enough@7#.

V. SELF-SUSTAINED INSTABILITIES

A. Transverse waves

Here let us consider transverse disturbances (ky50) of
the basic flow driven solely by the thermocapillary effe
The conventional linear stability analysis is concerned w
neutrally stable constant amplitude Fourier modes defined
real wave numbers. As follows from the basic discussi
such waves may in general be not self-sustained. Co
quently, they must be due to some remote forcing. If so, t
each such wave has to be associated with the directio
which it leaves the source. Adopting such a point of vie
we will look in the following for the conditions necessary fo
the development of self-sustained waves.

For this purpose it is advantageous to examine the neu
curves plotted in Fig. 7 showing the marginal Marango
number for temporally neutral waves (v i50) versus the fre-
quency of these waves. The curve withki50 corresponds to
the conventional stability threshold for constant amplitu
waves. As is seen, the constant amplitude waves can pr
gate only when the Marangoni number exceeds a cer
threshold, and the forcing frequency is not too high. For l
enough frequencies the marginal Marangoni number is
least a double-valued function. Moreover, for each M
rangoni number permitting propagation of constant am
tude waves there are at least two such waves which ma
emitted at different frequencies of forcing. But the most i
portant fact to notice is that the neutral curve makes a l
and at some point intersects itself, where the frequencie
both constant amplitude waves, which can propagate at
corresponding Marangoni number, coincide. Were these
waves propagating in the opposite directions, they might
coupled by reflections from the end walls, and, according
the global stability condition~7!, they could sustain eac
other in a sufficiently extended liquid layer without aid
any external forcing.

To determine the direction of propagation of these wav
let us examine the variation of the neutral curve upon add
to the wave number a small imaginary part. The neu
curve for a complex wave number defines the marginal M
rangoni numbers permitting propagation of the waves wit
temporally steady, but spatially varying amplitude. It may
seen in Fig. 7~a! that for a nonzero spatial growth rate on
branch of the neutral curve passes above the self-interse
for constant amplitude waves, while the other does it be
that point. This allows us to deduce the sign of the real p
of the group velocity of the corresponding waves. The n
tral curves under consideration Ma5Ma(v r ,ki) are implic-
itly defined by the conditionv i(v r ,ki ;Ma)50. By taking
e.
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the partial derivative with respect toki of this condition, we
obtain

]v i

]ki
52

]v i

] Ma

] Ma

]ki
.

The sign of the term]v i /] Ma depends on the direction o
variation of the temporal growth rate as Ma crosses the n
tral stability threshold. Since in the case under considera
the wave becomes temporally growing (v i.0) as Ma rises
above the neutral stability threshold, the corresponding te
is positive. Thus the neutral curve proceeding downwards
dki.0 or upwards fordki,0 implies a negative real part o
the group velocity. The opposite is true when the neu
curve proceeds upwards fordki.0 or downwards for
dki,0. Concerning the conventional neutral stability thres
old for constant amplitude waves the above criteria may
interpreted as follows. If, upon adding to the wave numbe
small imaginary partdki , the neutral stability threshold
shifts to the region of temporally growing constant amplitu
waves, the corresponding waves withki5dki are spatially
amplified rather than attenuated. Consequently, the
waves near the intersection have opposite signs of the
part of the group velocity. Note that we proved this sign
define the direction of propagation only for the wave havi
the highest temporal growth rate at the given frequen

FIG. 7. Neutral curves for various spatial growth rates and
threshold of global instability given by self-intersections~a!. Phase
and group velocities vs frequency at the threshold of the glo
instability ~b!; Pr55.
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4196 56JĀNIS PRIEDE AND GUNTER GERBETH
Thus this criterion is not granted to be correct for all oth
wave modes having lower temporal growth rates at the gi
frequency. However, there is one particular point on e
curve plotted in Fig. 7~a!, where the criterion of the group
velocity certainly gives the correct direction of propagati
for two wave branches. This is the point of self-intersect
of the neutral curve, where the frequencies of both neutr
stable waves having the same spatial growth rate occur a
same Marangoni number. Since there are no other neut
stable modes of this frequency and the given spatial gro
rate at the Marangoni numbers below the intersection,
point corresponds to the maximal temporal growth rate
the given frequency and spatial growth rate. Thus, at
self-intersection, the criterion of the group velocity is va
for both branches of the neutral curve. The conclusion is
these two are indeed oppositely propagating waves wh
can therefore sustain each other by reflections from the c
fining end walls, giving rise to the global oscillatory inst
bility.

A closer examination of the neutral curves shown in F
7~a! reveals that there may be a global instability at M
rangoni numbers lower than that for the constant amplit
waves. At sufficiently small positive spatial growth rate the
is another self-intersection point of the corresponding neu
curve where one wave is amplified, but another attenuate
the same rate. The minimum of the global instability thre
old occurs when the loop of the neutral curve tightens
gether to form a cusp, which is seen in Fig. 7~a! for ki50.19.
Since both waves merging at the cusp have opposite sign
the real part of the group velocity, this quantity turns to ze
at the cusp@see Fig. 7~b!#. Thus the mode corresponding
the cusp cannot be associated with a particular direction
propagation. It implies that this mode does not travel w
respect to the laboratory frame of reference and, henc
may be self-sustained without any reflections from the e
walls.

The cusp can be seen in Fig. 7~a! to correspond to the
minimum of the marginal Marangoni number, which r
garded as a function ofkr gives

] Ma

]kr
5

] Ma

]v i

]v i

]kr
50,

from which the imaginary part of the group velocity is se
to be zero at the given point. Since this point of zero gro
velocity is formed by merging of two oppositely travelin
waves, it satisfies the Briggs pinching criterion@21# defining
the threshold of the absolute instability. Note that a cor
sponding cusp map in the complex frequency plane was
gested in Ref.@22# for the detection of the absolute instab
ity.

As seen in Fig. 6, the absolute transverse wave instab
like the convective one exists only for sufficiently larg
Prandtl numbers (Pr.1). Note that disappearance of th
convective instability below Pr50.18 is related to the hydro
dynamic stability of the corresponding basic flow@18#. The
difference between both thresholds diminishes with the
crease of Pr, so that they become hardly distinguisha
However, such a proximity of both these thresholds is no
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general rule. As will be seen later, there may be a dra
difference between both thresholds when the buoyancy
comes significant.

B. Oblique waves

According to Smith and Davis@1#, the convectively most
unstable disturbance for thermocapillary driven flow is o
lique rather than transverse. Analogically, the transve
waves are not granted to be the most unstable ones
respect to a self-sustained instability. For the followi
analysis it is important to note that the problem under c
sideration is spanwise mirror symmetric. Because the tra
verse waves remain invariant upon such reflections, the s
wise component of the group velocity must be ze
implying that these waves propagate strictly streamwise.
this is not so for oblique waves whose spanwise compon
of the group velocity may in general be nonzero. In t
course of propagation, oblique waves can encounter an
reflected not only by the end walls, but also by the sidewa
The mirror symmetry implies that for each oblique wa
there is a spanwise mirror-reflected counterpart with
same streamwise, but an opposite spanwise direction
propagation. Thus a pair of mirror-symmetric oblique wav
may be mutually coupled by reflections from the sidewa
Further, if some oblique wave turns spatially amplified in t
spanwise direction, the amplitude of such a wave can
crease in course of multiple reflections from the sidewalls
a sufficiently wide system. Consequently, a neutrally sta
global state requires at least a couple of mirror-symme
oblique waves having spanwise invariant amplitude given
I@ky#50. However, such a pair of spanwise self-sustain
waves may in general drift streamwise, and so leave the
tem without causing any self-sustained instability. T
streamwise feedback necessary for the onset of a s
sustained instability requires an additional couple of mirr
symmetric oblique waves with a streamwise direction
propagation opposite to that of the first pair.

Let us concentrate further on the particular case wh
each pair of waves propagating in the same spanwise,
opposite streamwise directions, like the transverse wa
considered in V A, merge together in a single oblique wa
The resulting globally neutral state is constituted by a sin
couple of mirror-symmetric waves propagating strictly spa
wise in opposite directions with a spanwise-invariant amp
tude. Comparing to the transverse waves, now there is
real quantity more involved, i.e., the spanwise componen
the wave vectorkr ,y5R@ey•k#, which may formally be re-
garded as an additional control parameter like Ma. The pr
lem to be solved is nearly the same as that of the abso
instability for the transverse waves, except that the co
sponding threshold now is a function ofkr ,y . The minimum
of this threshold overkr ,y gives the critical Marangoni num
ber for the onset of the self-sustained instability which
analogous to the absolute one in the streamwise direct
but to the global one in the spanwise direction.

The critical Marangoni numbers corresponding to t
thresholds of both convective and self-sustained instabili
for the basic flow driven purely by thermocapillarit
(Bo50) are plotted versus Prandtl number in Fig. 8~a!. It is
evident that the oblique disturbances are indeed more d
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56 4197CONVECTIVE, ABSOLUTE, AND GLOBAL . . .
gerous with respect to a self-sustained instability than
transverse ones. Although the threshold of self-sustained
stability is in principle higher than that of the convectiv
instability, the difference between both is small, particula
for Pr.1. Nevertheless, there is a noticeable difference
the directions of the critical wave vectors for both types
instability @see Fig. 8~b!#. In contrast to the conventiona
stability theory, the given analysis predicts the amplitude

FIG. 8. Critical Marangoni numbers~a!, directions of the wave
vector ~b!, and the streamwise spatial growth rates (ki ,x5I@ex•k#)
~c! vs Prandtl number for various instability thresholds of th
mocapillary driven basic flow (Bo50). AGOO, COO, CST, AOT
denote absolute global oblique oscillating, convective oblique os
lating, convective stationary transverse, and absolute oscilla
transverse wave instabilities, respectively.
e
n-

n
f

f

the critical perturbation to be exponentially varying in th
streamwise direction. The streamwise spatial growth r
ki ,x5I@kx# versus Pr is plotted in Fig. 8~c!. Note that for
Pr.5, whereki ,x.0, the amplitude decreases in the positi
direction of thex axis, which is downstream with the fre
surface velocity, whereas for Pr,5 it increases.

In addition, it may be seen in Fig. 8~a! that the threshold
of the absolute-global instability, in contrast to the absol
one of transverse waves~see Fig. 6!, is lower for all Pr than
the threshold for stationary cells due to the hot end wall. T
means that the self-sustained instability due to traveling
lique waves sets in before the stationary cells become
tially amplified and spread over the whole layer, provid
the latter is extended enough. Since the extension of
layers is limited, the spatial attenuation rate of station
waves is also of practical significance. The downstream
tenuation rate and the corresponding wave number of
stationary perturbation occurring at the threshold of absolu
global instability are plotted in Fig. 9. It is evident that fo
Pr.0.12 this disturbance is spatially oscillating, and deca
over a distance comparable to the depth of the layer, whe
for Pr,0.12 the decay becomes monotonic and occurs ov
distance increasing with decrease of Pr. So, for Pr;1022 the
influence of the hot end wall can spread over tens of the la
depth.

VI. COMPARISON WITH EXPERIMENT

It turns out that with an increase of the buoyancy effe
the threshold of the instability observed in the experiment@2#
begins to differ strongly from that supplied by the conve
tional stability analysis@1,6#. The conventional theory pre
dicts an oscillatory instability to be always the most dang
ous one, whereas the experiment shows a station
instability developing first for sufficiently large Bond num
bers. The present approach in contrast to the conventi
one proposes a physical mechanism of the stationary in
bility whose threshold is seen in Fig. 10 to be in good agr
ment with the corresponding experimental findings. No
that the experimentally detected threshold is slightly low
than the theoretical one, especially at larger Bond numb

-

l-
g

FIG. 9. Dimensionless spatial attenuation rate and wave num
vs Prandtl number for the dominating upstream stationary w
induced by the hot end wall at the threshold of absolute-glo
instability of thermocapillary-driven basic flow (Bo50).
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4198 56JĀNIS PRIEDE AND GUNTER GERBETH
This slight difference may be because of the continuous p
ceeding of the spatial attenuation rate to zero as the
rangoni number approaches the corresponding thresh
Thus a liquid layer of a limited extension might seem
covered by a steady wave pattern of apparently constant
plitude already before the attenuation rate becomes exa
zero.

In addition, the experimentally detected threshold of
cillatory instability, which for Bo'0.2 begins to differ
strongly from that of the convective instability, is seen
Fig. 10 to be in good agreement with the threshold of
absolute-global instability introduced in this paper. Howev
note that for Bo.0.2 the stationary wave developing fro
the hot end wall covers the whole layer before the oscillat
instability sets in. Thus the last occurs on a basic state b
already disturbed by the first. This disturbance, which is
glected here, may be responsible for the remaining differe
between theoretical and experimental thresholds notice
in Fig. 10. Further development of the theory requires
analysis of nonlinear effects.

VII. SUMMARY AND CONCLUSIONS

This study dealt with the linear stability o
thermocapillary-buoyancy-driven convection in a horizon

FIG. 10. Experimental and theoretical critical Marangoni nu
bers for the onset of both steady multicellular~CST! and oscillatory
convection~AGOO! ~a! and the corresponding angle between t
critical wave vector andx axis ~b! depending on the Bond numbe
for 1-cS silicon oil (Pr513.9). The convective oscillating obliqu
wave instability~COO! results from the conventional theory.
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extended liquid layer subject to a longitudinal temperat
gradient. The concepts of convective, absolute, and glo
instabilities are applied to calculate the thresholds of exp
mentally observed spatial and temporal oscillations of
flow. First, the conventional approach, based upon the c
cept of convective instability, is critically discussed. Secon
the concept of the global instability for a spatially homog
neous system is presented in physically obvious terms
considering the virtual reflection of waves from distant co
fining boundaries. It is proven that the direction of propag
tion of the wave mode having the highest temporal grow
rate for a given frequency and spatial growth rate is corre
determined in an active medium by the sign of the real p
of the group velocity. The proposed criterion in contrast
the conventional one is local in the complex frequency pla
and, therefore, it is more convenient for practical applicati

We consider the effect of the boundaries on the spati
homogeneous basic state purely due to the thermocapi
effect. The principal idea is that distant lateral boundari
besides reflecting waves, may be regarded also as a pe
nent stationary disturbance of the homogeneous basic s
The problem is to determine how far this perturbation pe
etrates into the homogeneous basic state. Within the fra
work of linear theory, the solution of the problem is given b
the spatial attenuation rate~imaginary part of the wave num
ber! of zero frequency mode. For large Reynolds numb
(Re→`) the attenuation length increases proportionally w
Re, but within the purely hydrodynamic approximatio
(Pr50) it remains finite for any bounded Re. Coupling
temperature and hydrodynamic perturbations, which ta
place at nonzero Pr, results in a negative downstre
asymptotic attenuation when Pr.0.67. This means that fo
Pr.0.67 and sufficiently large Reynolds number the statio
ary wave induced by the upstream~hot! end wall may turn
spatially amplified and spread over the whole layer rega
less of its extent. Since the wave number of the station
constant amplitude wave which first covers the whole la
is purely real, such a wave develops beyond the threshol
convective instability of the zero-frequency mode.

The analysis of self-sustained traveling waves is based
the concept of the global instability of spatially homog
neous systems. The mechanism of this instability is provid
by virtual reflections of convectively unstable waves fro
distant lateral walls. The simplest neutrally stable se
sustained state is formed by the transverse waves couple
reflections from the end walls, so that the spatial amplifi
tion rate of one wave compensates for the attenuation rat
the other. The most unstable transverse wave state is fo
to occur when the wave numbers of both waves belongin
the same branch merge together. This corresponds to the
of the absolute instability. The most dangerous self-sustai
instability is caused by oblique rather than purely transve
disturbances. Such a self-sustained state comprises in ge
two couples of spanwise mirror-symmetric oblique wav
The most unstable state is formed when two waves pro
gating streamwise in the opposite, but spanwise in the s
directions merge together. This results in a single obliq
wave propagating strictly spanwise. The critical global mo
comprises a couple of such mirror-symmetric oblique wav
This resembles the absolute instability streamwise but
global one spanwise.
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When the basic state is purely due to thermocapillar
the threshold of the global instability is only slightly high
than that of the convective instability. For Pr.1, the effect
of the buoyancy results in a drastic rise of the global ins
bility threshold above the convective one. Moreover, un
the effect of buoyancy the stationary perturbation due to
upstream end wall turns convectively unstable and spre
over the whole layer before the onset of oscillatory conv
tion because of the global instability. The thresholds of b
oscillatory and stationary wave instabilities calculated fo
ea
,

-
r
e
ds
-
h
a

layer of 1-cS silicon oil are found to be in good agreeme
with the corresponding experimental data@2#.
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